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ABSTRACT
Post-wildfire investigations of groundwater response reveal a range of outcomes, varying from substantial increases to notable 
decreases in recharge and baseflow, with some studies indicating negligible or short-lived effects. This review assesses these 
varied responses within five critical categories: climate, vegetation, hydrogeology, fire characteristics, and the cryosphere, 
examining both short-term (within 2 years) and intermediate (2–10 years post-fire) effects. Despite considerable variability, 
some consistent patterns emerge. For instance, in hydroclimatic settings where water input and evaporative demand cycles 
are out of sync, post-wildfire groundwater responses tend to be positive (i.e., increased flux or storage), whereas under low fire 
severity conditions or in vegetation types that quickly recover, groundwater responses tend to be negative (i.e., decreased flux 
or storage). We synthesize relevant findings into a compendium of testable hypotheses aimed at explaining the spatiotemporal 
variability in observed post-wildfire groundwater responses. A recurring theme is the critical influence of the pre-wildfire 
groundwater regime on expected response and recovery. We identify opportunities for specific improvements in post-wildfire 
monitoring and modeling that would further advance capabilities to predict groundwater response. A key area for further 
research is understanding how wildfire effects on snow dynamics and other cryospheric processes translate to changes in 
groundwater.
JEL Classification: Hydrological Processes

1   |   Introduction

Forested watersheds are increasingly affected by wild-
fire. Potentially negative effects on water quality and shifts 
in water quantity have been documented worldwide (e.g., 
Belongia et al. 2023; Bladon et al. 2014; Hallema et al. 2017; 
Nunes et al. 2018; Robinne et al. 2021; Smith et al. 2011). The 
importance of studies aimed at understanding hydrologic ef-
fects of wildfire continues to grow as wildfire frequency and 
affected area increase in response to climate change, intense 
heat, and extended drought (Abatzoglou and Williams 2016; 
Parks and Abatzoglou 2020; Zhuang et al. 2021). Post-wildfire 

hydrologic investigations typically target immediate and 
short-term (< 2 year) responses in overland flow, streamflow 
peaks, and annual yield due to the deleterious consequences 
of flooding, erosion, debris flows, and surface water quality 
that are elevated in the near-term following fire (e.g., Coombs 
and Melack 2013; Lane et al. 2006; Murphy et al. 2015, 2020; 
Kean et al.  2019; Vieira et al.  2023). Less common are stud-
ies that address the longer-term and deeper subsurface hy-
drologic response to wildfire, even though groundwater 
interaction is increasingly recognized as playing a vital role 
in mediating the overall hydrologic response to wildfire 
(Hallema et  al.  2017; Atwood et  al.  2023; Rey et  al.  2023; 
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Bush et  al.  2024). Communities within and downgradient 
of wildfire-affected regions may utilize both surface water 
sources fed by groundwater as well as direct pumping from 
groundwater. Herein, we define the groundwater response to 
wildfire to include changes in recharge, groundwater storage, 
and baseflow (generally groundwater generated), with the 
acknowledgment that wildfire-affected changes in unsatu-
rated zone water fluxes, soil moisture, and rock moisture are 
highly relevant and connected. Studies that address observed 
groundwater response to wildfire describe divergent findings, 
with groundwater flux and storage components increasing 
(e.g., Kinoshita and Hogue  2011; Giambastiani et  al.  2018), 
decreasing (e.g., Silberstein et al. 2013), and exhibiting mixed 
behavior or no appreciable change (e.g., Johnk and Mays 2021; 
Balocchi et al. 2022). Variability in groundwater response is 
hypothesized to depend on burn severity and area, climate, 
landcover type, vegetation, topography, soils, geologic setting, 
and time since fire, among other possible influences, though a 
comprehensive understanding of factors and interrelated pro-
cesses controlling groundwater response remains underdevel-
oped (Paul et al. 2022).

Groundwater responses to wildfire effects depend on multi-
ple hydrologic processes that recover from fire over different 
timescales. Numerous studies show reduced post-wildfire 
infiltration due to changes in soil hydraulic properties in the 
upper few centimeters that promote infiltration-excess runoff 
generation in response to storm events (Moody et  al.  2013; 
McGuire et  al.  2021). Such changes include enhanced soil 
water repellency (DeBano 2000; Ferreira et al. 2005), ash stor-
age (Woods and Balfour 2010; León et al. 2015), surface seal 
formation (Larsen et al. 2009), macropore collapse or infilling 
(Nyman et al. 2010, 2014), and soil structural changes that de-
crease saturated hydraulic conductivity (Moody et  al.  2016). 
Most of these effects are transient, peaking soon after fire 
and tapering 1–2 years after fire (e.g., Robichaud et al.  2016; 
Ebel and Martin  2017), or slightly longer recovery times for 
saturated hydraulic conductivity (Moody et al. 2013). Though 
reduced infiltration generally translates to reduced recharge, 
it is important to consider the short-lived nature of many 
processes that enhance infiltration-excess runoff generation 
(Ebel 2020) and the potentially longer lasting effects on can-
opy interception and evapotranspiration (ET) from vegetation 
degradation and mortality (e.g., Collar et  al.  2022, 2023; Ma 
et  al.  2020; Poon and Kinoshita  2018). Of equal consider-
ation are expected differences in hydrologic partitioning as 
a function of precipitation intensity and energy availability. 
The longer-term groundwater response to wildfire, therefore, 
reflects the balance of changes in ET and soil hydraulic prop-
erties during vegetation recovery as subjected to both storm 
events and inter-storm periods.

Process-focused hydrologic studies that devote attention to 
groundwater response to wildfire tend to be locally specific, 
which can limit the extensibility of these findings to other areas. 
On the other end of the spatial scale spectrum, large-scale aggre-
gated efforts to assess patterns in groundwater-related wildfire 
response have been limited by data availability and hydrocli-
matic variability that complicate parsing the hydrologic effects 
that are solely from wildfire (Beyene et al. 2021). Wildfire effects 
on snowpack water and energy balances in snow-influenced 

systems can further confound untangling the overall hydro-
logic response to wildfire (Smoot and Gleason  2021; Kampf 
et al. 2022; McGrath et al. 2023; Reis et al. 2024). Evidence of 
snowpack response to wildfire reveals seemingly contradictory 
results due to the countering influences of reduced snowfall 
interception (favoring accumulation) and enhanced snowpack 
energy inputs (favoring melt). How wildfire effects on snowpack 
dynamics and related cryospheric processes translate to changes 
in groundwater flux or storage is a largely unexplored topic. 
The lack of definitive understanding of expected post-wildfire 
groundwater response motivates this synthesis that includes an 
overview of existing relevant studies, compilation and discus-
sion of findings, and a path forward for future work including 
generating testable hypotheses to explain spatiotemporal vari-
ability in observed responses.

2   |   Post-Wildfire Changes in Groundwater Flux 
and Storage

2.1   |   Recharge and Groundwater Storage

Studies reporting direct measurements of pre- and post-wildfire 
water table levels to evaluate the effects of wildfire on ground-
water storage and recharge are extremely limited at present 
(Table 1). In an attempt to systematically analyze groundwater 
level response to wildfire from 1980 to 2016 across the contigu-
ous United States (US), Johnk and Mays (2021) found only one 
groundwater monitoring site that met their search criteria for 
wildfire proximity, data completeness 3 years before and after 
fire, and freedom from confounding processes expressed in the 
water level timeseries record. This monitoring well in Beaver 
County, Utah (US), showed a temporary reduction in ground-
water level, following the Honey Boy fire in 1996, that lasted 
2 years before resuming to pre-fire levels. The decline in ground-
water recharge, adjusted for precipitation variability, was hy-
pothesized to result from transient wildfire-induced changes in 
soil hydraulic properties that impede infiltration. The transient 
response is consistent with soil hydraulic measurements that 
promote peak infiltration-excess runoff generation in the first 
2 years following fire, and thereby limiting recharge, with re-
covery of near-surface soil hydraulic properties thereafter (e.g., 
Ebel 2020; McGuire et al. 2021).

As an alternative to using pre- and post-wildfire groundwater 
monitoring data that are rarely available, some studies have 
implemented new groundwater monitoring in adjacent burned 
and unburned areas for comparison to infer wildfire-influenced 
groundwater response. Such groundwater level observa-
tions from a coastal aquifer in Italy reported by Giambastiani 
et al.  (2018) show recharge rates in a burned area 4 years post 
wildfire that exceed those in the unburned area by three to 
seven times. This striking increase in estimated post-wildfire 
recharge is likely elevated by its site characteristics and precipi-
tation patterns that make the system unlikely to incur a substan-
tial wildfire-influenced change in overland flow. Specifically, 
the site is characterized by sandy substrate and low relief as well 
as a hydroclimatology characterized by low intensity rainfall, 
all of which tend to limit infiltration-excess runoff. Therefore, 
the reduction in canopy interception and tevapotranspiration re-
sulting from fire-induced forest mortality manifest prominently 
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in the increase in groundwater recharge, with few counteracting 
processes.

Some studies have taken advantage of planned controlled burns 
(i.e., prescribed fire to manage fuels) to characterize recharge 
response to fire. Controlled burns typically do not reach the 
high temperatures and intensities associated with most wildfire 
occurrences (e.g., Alcañiz et al. 2018) making the translation to 
post-wildfire response open for debate, yet worth noting. In a 
study conducted in southwest Australia, Silberstein et al. (2013) 
observed an increase in recharge immediately following a 
controlled burn using a combination of groundwater and soil 
moisture monitoring, remotely sensed ET, and physically based 
modeling. After 3 years post-fire, vegetation recovery and the 
associated resumption and uptick in ET negated this initial 
enhanced recharge pulse, eventually leading to a net decrease 
in recharge. Low-relief and coarse sandy soil texture at this 
site contributed to the relatively uncomplicated signal of the 
groundwater response attributed to changes in ET from vege-
tation mortality and recovery, leaving initially more and then 
less water available, respectively, for recharge. Low severity of 
the controlled burn, as well as the initial post-fire enhancement 
in soil moisture, likely contributed to rapid vegetation regrowth 
and associated ET recovery.

2.2   |   Soil Water Storage

In post-wildfire hydrologic studies, soil moisture data are 
more prevalent than data such as unsaturated zone tracer 
information or water table elevation timeseries that can be 
used to estimate recharge. Because changes in soil water 
storage and recharge typically follow the same trajectory, 
changes in deep soil moisture following fire have been used 
in several studies to infer post-wildfire recharge response 
(Table 1). Typical measurement techniques include soil mois-
ture probes, sensors, and non-invasive geophysical methods 
such as electrical resistivity surveys to quantify and describe 
changes in soil water storage. Several observational studies re-
port increases in soil water storage in response to wildfire dis-
turbance through comparison of conditions at paired burned/
unburned sites (e.g., Silva et  al.  2006; Ebel  2013a; Cardenas 
and Kanarek 2014; Atwood et al. 2023). Studies reporting no-
table decreases in soil water storage in post-wildfire settings 
are also common (e.g., Obrist et  al.  2004 and others in Tab. 
4 of Silva et  al. (2006)) highlighting the variety of compet-
ing factors controlling subsurface hydrologic response. Field 
investigations have been complemented by physically based 
modeling studies that support increased post-wildfire soil 
water storage in response to the reduction in canopy intercep-
tion and transpiration in burned areas (Ebel  2013b; Atchley 
et al. 2018; Abolafia-Rosenzweig et al. 2024). Combustion of 
the litter/duff layer reduces above-ground water storage, and 
combustion of near-surface soil organic matter alters soil-
water retention properties, both of which can also promote 
enhanced soil water storage in the deeper unsaturated zone 
(Ebel  2013a). In a modeling analysis extending 2 years post 
wildfire, Atchley et al. (2018) showed that reductions in soil 
water storage only occurred for high burn severity cases in 
which infiltration-limiting parameterization of soil hydrau-
lic properties dominated over reductions in ET in the water 

balance. Though soil water storage and recharge are generally 
positively correlated, changes in one do not always correspond 
to changes in the other in post-wildfire settings. For example, 
in systems with deep water tables, a reduction in ET the first 
year following fire can lead to an early-time enhancement of 
soil moisture in the unsaturated zone that is depleted upon 
rapid, deep-rooted vegetation regrowth prior to supplying the 
water table, resulting in little to no effect on recharge (e.g., 
Silberstein et al. 2013). It is also possible to have post-wildfire 
increases in recharge via enhanced preferential flow with 
minimal observable increases in soil moisture, or with brief 
periods of enhanced soil moisture that could be missed de-
pending on the frequency of observations. Augmented pref-
erential flow through fingering in dry soils prevails in some 
post-wildfire settings due to water repellent soil conditions 
and heightened soil moisture variability (Stoof et  al.  2014), 
thereby increasing recharge. Another potential mechanism 
of wildfire-induced preferential flow in arid and semiarid re-
gions is through macropores enhanced by surficial variabil-
ity in water repellency (Nyman et al. 2010) and through root 
pathways (Lei et al. 2021; Leslie et al. 2014).

2.3   |   Baseflow

The downstream effects of wildfire-induced changes in ground-
water hydrology can be manifested in baseflow magnitude, tim-
ing, temperature, isotopic signature, and streamflow chemistry. 
Because these effects may be subtle and occur over prolonged 
timeframes, studies examining wildfire disturbance need to 
account for interannual to longer-term climatic variability 
and other factors, including antecedent water storage condi-
tions (Littell et al. 2016) and compensatory plant water uptake 
in unburned and riparian areas (Bart and Tague  2017; Collar 
et  al.  2023) that can enhance or dampen baseflow response. 
Due to these complexities, parsing wildfire effects to baseflow 
remains challenging.

Several approaches have been used to infer changes in 
groundwater-stream exchange in response to wildfire, with 
results that vary from enhanced to reduced groundwater con-
tribution to streamflow. Increases in baseflow are more com-
mon than reductions for studies with observations extending 
> 1 year post fire (Table 1). Wildfire effects on baseflow have 
been shown to vary depending on the seasonal period of in-
vestigation, with increases more typically observed during the 
summer dry period and more variable during the wet season 
(Bart and Tague  2017; Jung et  al.  2009). Baseflow recession 
analysis yielded reduced post-wildfire recession rates that 
correspond to enhanced groundwater-stream exchange in 
central and southern California, US (Bart and Tague  2017). 
Atwood et al. (2023) used stable isotopes to characterize po-
tential differences in groundwater-stream exchange between 
paired burned and unburned watersheds in the San Gabriel 
Mountains in California, US. The results pointed to a post-
wildfire enhancement in shallow groundwater contributions 
to streams, which conceptually aligned with post-wildfire 
increases in soil water storage identified through time-lapse 
electrical resistivity surveys. Blount et al. (2020) documented 
a sustained (10-year) increase in baseflow together with an in-
crease in annual yield following the Chippy Creek fire in the 
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Mill Creek basin of Montana, US. Water level data from two 
groundwater monitoring wells downgradient of the burned 
area indicated a post-wildfire increase in groundwater storage 
in support of the observed baseflow enhancement. A study by 
Balocchi et al. (2022) assessed post-wildfire hydrologic effects 
in three catchments in central Chile that were completely 
burned by a high severity fire in January of 2017 following an 
unusually dry 8-month period. By contrast, the year following 
the fire was unusually wet. Based on analysis of streamflow 
data 7 years pre fire and 2 years post fire, the ratio of baseflow 
to annual flow was shown to increase in two of the catch-
ments and decrease in the remaining catchment. The study 
also tested the use of tritium as a tracer for evaluating changes 
in groundwater transit times that could be attributed to fire. 
The authors concluded that a monitoring period longer than 
their 2-year study would be required for detecting changes in 
transit time, given the tritium-informed mean transit times 
of 5–30 years. This study highlights the potential of using 
isotopic methods for augmented analysis and the limitations 
of short-term post-wildfire monitoring for understanding 
groundwater response.

Additional studies have compared pre- and post-wildfire low 
flows, which under some conditions are a reasonable proxy for 
groundwater discharge to streams (i.e., baseflow). An important 
exception is that in dry settings, low flow conditions may be more 
reflective of water released from riparian storage rather than 
from the local or regional groundwater system if/when water ta-
bles are not well connected to the stream corridor. Reported low-
flow response to wildfire yields mixed results. A seminal study by 
Wine and Cadol (2016) examining three large watersheds in New 
Mexico that had experienced over 100 wildfires between 1982 
and 2014 found no changes in low flows that could be attributed 
to wildfire after accounting for local to regional hydroclimatic 
variability. Yet in the central Argentina highlands, dry-season 
post-wildfire low flows declined by 31%–48% in support of the 
infiltration-evapotranspiration tradeoff hypothesis that postu-
lates that the effect of impaired infiltration exceeds the effect of 
reduced ET on net subsurface storage and flow in response to 
vegetation degradation (Cingolani et al. 2020). Scott and Schulze 
(1992) also reported a baseflow reduction in response to wild-
fire attributed to a strong soil repellency effect that enhanced 
infiltration-excess runoff generation and in turn reduced re-
charge. Both Cingolani et al. (2020) and Scott and Schulze (1992) 
focused on the low-flow response the year after fire. In contrast, 
Kinoshita and Hogue (2015) observed 118%–1090% increases in 
low flow volumes of ephemeral and intermittent stream systems 
averaged over nearly a decade following a 2003 wildfire in the 
semi-arid San Bernardino Mountains, California (US). These 
observed increases were attributed to a basin-wide reduction in 
transpiration resulting from plant canopy removal allowing more 
available water for baseflow. Elevated fall low flows (referred to 
as baseflow in the study) were also observed 3 years post-wildfire 
in the western Cascade Range, Oregon, US (Bush et  al.  2024) 
though the increases were relatively small, due perhaps to low-
moderate fire severity.

A large-sample hydrology approach to assess the aggregated 
response to wildfire occurrence over large spatial scales 
across diverse settings (after Gupta et  al.  2014) can serve as 
an important complement to place-based studies that examine 

baseflow and low flow response to individual wildfires or to 
a series of wildfires in a common regional setting (e.g., Bart 
and Tague 2017; Wine and Cadol 2016). For example, Beyene 
et al. (2021) examined changes in pre- and 5-year post-wildfire 
low flows across the western US using empirical approaches. 
They used a bootstrap and double mass analysis followed by 
quantile regression approach to parse the effects of wildfire 
from meteorological variability over the pre- and post-wildfire 
time periods. The results yielded increases attributed to wild-
fire in flow at the 0.05th quantile by 10%–5000% at 26 of 44 
stream sites evaluated and decreases attributed to wildfire 
at the 0.05th quantile at 11 sites. The study highlighted a no-
table increase in low flow response in the Pacific Northwest 
and California regions with contrasting responses in the Rio 
Grande and Lower Colorado regions. Soil permeability was 
found to be the most important predictor of wildfire response 
to flow at the 0.05th quantile, followed by slope, burned area 
and severity, and annual baseflow index (Beyene et al. 2021). 
Rey et al. (2023) also investigated baseflow response to wild-
fire over similar durations (5 years pre and post fire) across 
the western US by developing a temperature tracing approach 
for detecting changes in groundwater contribution to stream-
flow. This approach identified a substantial shift in air and 
stream water coupling, indicative of a post-wildfire increased 
groundwater contribution to streams when taken in aggre-
gate, in line with findings in Beyene et  al. (2021). Further 
examination revealed variability in individual post-wildfire 
response that was determined to some extent by source depths 
of pre-wildfire groundwater contributions to streamflow. Saxe 
et al. (2018) examined 82 fire-affected watersheds in the conti-
nental US with ≥ 10 years of continuous pre-fire daily stream-
flow records and ≥ 5 years of continuous post-fire daily flow 
records to assess effects on low flows (average daily flow at 
90% exceedance) and baseflow index. Increases in low flows 
and baseflow indices were found for the first 2 years post-fire 
followed by decreases over longer time periods. First-year low 
flows showed larger increases when the burned area fraction 
was > 23%, and second-year low flows showed larger increases 
when burned area fraction was > 37%.

3   |   Spatiotemporal Patterns in Post-Wildfire 
Groundwater Responses and Underlying Processes

3.1   |   Spatial Considerations

Underlying regional (e.g., climate, vegetation) to local (e.g., hy-
drogeology) conditions together with wildfire characteristics 
play roles in determining the magnitude and directionality of the 
groundwater response to wildfire. Fire effects on cryospheric pro-
cesses also come into play in cold regions. Based on limited avail-
able studies, as well as foundational understanding of recharge 
and discharge processes, we can begin to identify and interpret 
emerging patterns to explain disparate and spatially variable post-
wildfire groundwater responses summarized in Table 2.

3.1.1   |   Climate-Vegetation Interactions

Climate can influence groundwater response to wildfire in 
multiple ways related to (1) amount and intensity of energy and 
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water inputs, (2) timing of atmospheric demand vs. water in-
puts, and (3) cryospheric processes (discussed in Section 3.1.4) 
(Figure  1). Embedded within these primary considerations 
are additional and cross-cutting factors, including the land-
cover types and vegetation recovery rates supported by cli-
matic conditions.

The typical rainfall regime of an area is expected to play a role 
in groundwater response to wildfire as well as the specific pre-
cipitation conditions before and after the fire within the burned 

area. The latter, however, comes into play more prominently 
for the short-term rather than the long-term response. Regions 
prone to high intensity storms are likely to experience increased 
infiltration-excess runoff following wildfire, potentially leaving 
less available water for groundwater recharge, especially shortly 
after fire when wildfire-effects that reduce infiltration are stron-
gest (Moody et al. 2013; Balfour et al. 2014) (Figure 1). However, 
high intensity precipitation events in arid and semi-arid regimes 
with dry soils can promote preferential flow, through wetting 
front instability, fingering and macropore channeling, as a 

FIGURE 1    |    Schematic depiction of pre-fire, early-time post-fire, and intermediate-time post-fire conditions with accompanying surface runoff, 
actual ET, and recharge timeseries for a reduced recharge scenario with rapid revegetation (A–D), and increased recharge scenario for a synchro-
nous water and energy input system (E–H), and an asynschronous water and energy input system (I–L). Dotted line in B, C, F, G, J, and K represents 
the prefire water table. Dashed line in C, G, and K represents the early-time (0–2 years) post-fire water table. Horizontal dashed lines in D, H, and L 
denote pre-fire actual ET and groundwater recharge for comparison in the post-fire time series. Annual guidelines (vertical dashed lines) highlight 
water/energy synchrony (D and H) and asynchrony (L).
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mechanism for recharge that may be enhanced in post-wildfire 
settings (Stoof et al. 2014).

In climates with relatively synchronous energy and water de-
livery cycles (evaporative demands and precipitation input are 
high during the same season), some recharge during the grow-
ing season can be expected though seasonal variability may also 
be present. Here, compensatory uptake during the summer/
growing season may offset wildfire-induced reductions in can-
opy interception and transpiration in climatic conditions that 
support summer recharge (Collar et  al.  2023). Thus, compen-
satory measures become major factors in determining ground-
water response, and mixed outcomes are observed in systems 
with synchronous energy and water inputs. Landcover type 
and vegetation recovery rate are also key variables in ground-
water response. Primary differences in response are observed 
among forests, shrublands, and grasslands due to variations in 
the capacity of these landcover types to intercept precipitation, 
alter the surface energy balance, access groundwater through 
deep rooting structures, and revegetate after wildfire (Ahmad 
et al. 2024). Negative (decreased) or negligible groundwater re-
sponses to wildfire are most common in regions with rapid re-
vegetation rates such as grasslands (Duncan and Thomas 2004; 
Cingolani et al. 2020) or vegetation that regenerates by basal or 
epicormic resprouting (e.g., Nolan et  al.  2014) (Figure  1A–D), 
whereas positive (increased) groundwater responses are more 
typical of forested landcover types (Ebel  2013a; Giambastiani 
et al. 2018) (Figure 1E–H). Though landcover type at the time 
of the wildfire is a key groundwater response variable, post-
wildfire vegetation shifts from forest to shrubs and grassland 
(Blount et  al.  2020; Collar et  al.  2023) can also be important 
because of shifts in vegetation phenology, rooting depth, and 
total plant-water use (Figure 1E–H). Another consideration of 
increasing importance is the additional stressor of drought con-
ditions that contribute to slow recovery in non-forested vegeta-
tion types with shallow rooting structures (Ahmad et al. 2024).

In climate regimes with warm dry summers and cool wet win-
ters, evaporative demands and water inputs are not in phase (i.e., 
asynchronous; Figure 1I–L). Post-wildfire studies conducted in 
Mediterranean climates, for example, tend to exhibit positive 
(increased) groundwater responses (Table 2). The asynchrony of 
energy and water inputs imparts a strong seasonal dimension 
to recharge (winter-dominated recharge), which likely bears 
critical context for assessing the post-wildfire groundwater re-
sponse. During the winter/non-growing season when the poten-
tial for compensatory uptake of increased available soil water is 
low, reductions in precipitation interception from wildfire may 
be crucial for determining changes in recharge.

3.1.2   |   Hydrogeologic Conditions

Just as the underlying climate-vegetation interactions support-
ing seasonal recharge are critical for predicting wildfire dis-
turbance, so too are the existing hydrogeologic conditions. Soil 
permeability and topography are key variables that define hy-
drogeologic setting. These hydrogeologic variables were identi-
fied as the top two predictors of low flow wildfire response in the 
large-scale investigation by Beyene et al. (2021). In systems with 
highly permeable near-surface soil, post-wildfire reductions in 

transpiration and canopy interception may be more likely to 
outweigh and outlast short-lived increases in infiltration-excess 
runoff resulting from soil water repellency and soil seal forma-
tion over longer (> 2 years post fire) timescales. The expected 
2–5-year net result in highly permeable near-surface soil sys-
tems is a post-wildfire increase in recharge as was observed 
by Giambastiani et  al.  (2018) and inferred by Cardenas and 
Kanarek (2014) and Blount et al. (2020). The scientific commu-
nity currently lacks quantitative methodologies to determinis-
tically estimate post-wildfire effects on soil permeability and 
timescales of recovery. This knowledge gap poses challenges to 
predicting post-wildfire groundwater response regionally. An 
additional challenge for prediction is the lack of high quality 
hydrogeologic characterization to describe groundwater-surface 
water connectivity and dynamic groundwater storage that goes 
beyond topography and available soils maps.

Systems with steep slopes have been shown to bear the stron-
gest response to wildfire in infiltration-excess runoff generation 
(e.g., Ebel 2013a, 2013b; Moody et al. 2013). Although slope plays 
a role in recharge response following fire, no clear association 
has been established. Studies conducted in watersheds with 
high and low relief also show mixed post-wildfire groundwater 
responses suggesting that slope is just one of several controlling 
factors.

Pre-wildfire hydrogeologic conditions have been shown to exert 
influence in determining the groundwater response to wildfire. 
For example, an investigation examining hydrologic response 
in the western US detected notable post-wildfire changes in 
thermal signals suggestive of increases in shallow groundwater 
input to streamflow primarily in streams that lacked a substan-
tial connection to a deep groundwater source pre-wildfire (Rey 
et  al.  2023). Streams with a strong pre-wildfire deep ground-
water contribution were least likely to exhibit a change in the 
annual thermal signal. Similar findings were derived using a 
geochemical end member mixing analysis that revealed a post-
wildfire increase in the groundwater component of inter-storm 
stream water for a small basin in southern California, US, with 
an initial low groundwater fraction compared with a larger 
baseflow-dominated system that appeared minimally affected 
with respect to source water partitioning (Jung et  al.  2009). 
Prior synthesis of vegetation disturbance effects on streamflow 
noted that groundwater responses depended on the strength of 
connectivity to deep groundwater systems (Adams et al. 2012; 
Bruijnzeel 2004; Knighton et al. 2020).

3.1.3   |   Wildfire Characteristics

Factors pertaining to the wildfire itself are expected to influ-
ence the groundwater response. Higher burn severity has 
been shown to correlate with greater reductions in infiltration 
(Moody et  al.  2016) from event-based precipitation, effectively 
limiting recharge in favor of overland flow. Burn severity also 
affects the post-wildfire ET response as forests burned at low 
severity may continue to transpire immediately following fire, 
whereas transpirational leaf surface area plummets in high 
severity burns, potentially allowing more water for recharge. 
Atchley et al. (2018) used a physically based modeling approach 
to isolate the influence of burn severity, as parameterized in a 
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hydrologic model, on the soil water balance tipping point be-
tween increased runoff and decreased transpiration induced 
by fire over the first 2 years following wildfire. For low severity 
cases, reductions in transpiration outweighed enhanced sur-
face runoff in the water budget, leading to increased soil water 
storage and potential for recharge. In contrast, model results 
for high severity sites surpass an infiltration threshold where 
enhanced surface runoff dominates the post-fire water budget, 
leading to reduced soil water storage and potential for recharge. 
Over longer timescales (> 2 years), burn severity may have an 
opposing effect to that described above. Higher burn severity 
corresponds to greater vegetation mortality and slower vege-
tation regrowth resulting in reduced transpiration (Poon and 
Kinoshita 2018; Cooper et al. 2019), reduced canopy interception 
(Su et al. 2022), and enhanced potential for macropore develop-
ment from tree root decay (Stoof et al. 2014; Leslie et al. 2014), 
all of which would promote increased recharge. Burn severity in 
riparian corridors may be especially important in determining 
baseflow response to fire (Bart and Tague 2017). Based on avail-
able studies, we infer burn severity to be positively correlated to 
groundwater recharge and baseflow over intermediate post-fire 
timescales (2–10 years) when ash effects and soil repellency have 
diminished.

The fraction of the watershed that has burned likely plays a role 
in determining a wildfire effect on the groundwater system, 
though no established minimum percent watershed threshold 
exists for an expected groundwater response. Typical reported 
minimum thresholds of percent watershed burned for expected 
post-wildfire changes in annual yields in streamflow are on the 
order of 20% (Hallema et al. 2017; Saxe et al. 2018). Aggregated 
large-scale studies examining low flow and baseflow response 
to wildfire have used criteria of > 5% (Beyene et al. 2021) and 
> 10% (Rey et  al.  2023) watershed burned for inclusion in 
analysis. Results from Beyene et  al. (2021) show that signifi-
cant post-wildfire changes in annual baseflow yield ratio were 
more common in sites with > 25% watershed burned than sites 
with 10%–15% watershed burned, suggesting a groundwater-
response dependence on burned area proportion. Saxe et  al. 
(2018) showed low flow increases were more pronounced with 
> 23% watershed burned. An additional consideration noted as 
relevant for compensatory uptake, especially in baseflow analy-
sis, is the percent of the burned area that encompasses the ripar-
ian zone (Bart and Tague 2017).

3.1.4   |   Cryospheric Processes

In cold regions, cryospheric processes can provide an additional 
layer of complexity in contributing to the net effect of wildfire 
on groundwater recharge and baseflow. Relevant cryospheric 
processes include snow dynamics, seasonal freeze/thaw, the 
interaction between snow and seasonally frozen ground, and 
permafrost dynamics (Figure  2). The complete or partial loss 
of forest canopy resulting from wildfire can lead to a notable 
reduction in snow interception and changes to the surface en-
ergy balance (Moeser et al. 2020), the latter of which can also 
be affected by ash-induced decreases in snow albedo soon after 
fire (Gleason et  al.  2019; Koshkin et  al.  2022). Studies have 
shown increases (Seibert et al. 2010; Maxwell et al. 2019), de-
creases (Smoot and Gleason 2021; McGrath et al. 2023; Hatchett 

et al. 2023; Reis et al. 2024; Surunis and Gleason 2024), and no 
change (Goeking and Tarboton  2020) in snowpack accumula-
tion in response to wildfire. Despite these key differences, there 
has been greater agreement that wildfire-affected areas in snow-
dominated systems exhibit enhanced snowmelt rates and earlier 
snow disappearance as a result of a positive net shortwave ra-
diation balance (Seibert et al. 2010; Gleason et al. 2019; Smoot 
and Gleason 2021; Kampf et al. 2022; McGrath et al. 2023). The 
effect of post-wildfire changes in snow accumulation and ab-
lation on groundwater recharge and discharge remains under-
studied. Cold, snow-dominated systems are prone to seasonally 
frozen ground that can play a role in snowmelt partitioning as 
a solid ice-rich layer can act as a barrier to flow (and recharge) 
if laterally continuous (Ala-Aho et  al.  2021). Thicker snow-
packs that impart greater thermal insulation during the win-
ter and thus warmer soils could lead to thinner seasonal frost, 
earlier soil thawing in the spring, and enhanced groundwater 
recharge in response to a larger and earlier post-fire snowmelt 
pulse (Ebel et  al.  2012; Figure  2A–D). Alternatively, the mid-
winter or early season snow melt events, potentially more com-
mon under burned conditions (Hatchett et al. 2023), could lead 
to reduced groundwater recharge due to reduced snowpacks, 
thicker seasonal frost, and impeded infiltration into frozen soils 
early in the season (Figure 2E–H). Soil freeze/thaw may have 
an additional impact on hydrologic partitioning following wild-
fire by limiting the short-term effects of wildfire-enhanced soil 
repellency (Rakhmatulina and Thompson 2020), thereby favor-
ing a positive recharge response. This reduction in repellency 
from freeze/thaw soil mechanics has been observed in wet soils. 
There is little comparable effect in dry soils due to the low vol-
ume of pore water changing phase.

Wildfire promotes permafrost thaw in some sub-arctic environ-
ments (Minsley et al. 2016; Gibson et al. 2018; Rey et al. 2020) 
that may also impact groundwater processes. Archetypal 
physically based modeling analyses have demonstrated how 
wildfire-induced thaw in permafrost settings can increase base-
flow and extend shoulder season groundwater discharge with 
thaw-induced opening and expansion of subsurface flowpaths 
(Walvoord et  al.  2019) and conversely can decrease baseflow 
magnitude if increased ET dominates the post-wildfire response 
(Zipper et  al.  2018). Wildfire-induced thaw is commonly at-
tributed to combustion of near-surface organic matter and loss 
of canopy cover that provide key thermal insulation and soil 
shading, respectively, during the summer season. In addition, 
reduced snow interception from canopy loss can yield a thicker 
snowpack offering enhanced insulation from frigid winter air 
temperatures, further promoting permafrost thaw (Figure 2I–L).

3.2   |   Temporal Considerations

Hydrologic response to wildfire evolves through time as fire-
enhanced soil water repellency diminishes and vegetation re-
growth occurs (Partington et  al.  2022), both of which affect 
the temporal component of the expected groundwater response 
to fire. Repellency effects have been shown to taper notably 
the first year following fire even under high severity burns 
(DeBano  2000), thereby creating a transient effect that may 
explain findings that suggest early post-wildfire reductions in 
recharge followed by mid-to longer-term increases (Johnk and 
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Mays 2021; Giambastiani et al. 2018). Vegetation recovery rates 
vary substantially among climate settings and ecotypes; they 
can also depend on burn severity and pre-fire drought condi-
tions. Rapid understory vegetation regrowth can shift the near-
surface water balance to pre-wildfire conditions in just a year or 
two, potentially imparting a negligible or reduced post-wildfire 
groundwater response. In contrast, ecosystems that support low 
growth rates and/or have undergone high severity fires may 

take a decade or more to resume ET rates that are comparable to 
pre-wildfire conditions (Ahmad et al. 2024). In the latter case, 
long-term monitoring is needed to capture the complete ground-
water response.

A lagged post-wildfire groundwater recharge response may be 
expected in systems with deep water tables and long transit 
times through the vadose zone. A lagged response may also 

FIGURE 2    |    Schematic depiction of pre-fire, early-time post-fire, and intermediate-time post-fire conditions with accompanying snowmelt input, 
actual ET, and recharge timeseries for an increased recharge scenario in a snow-dominated system (A–D), decreased recharge scenario in a snow-
dominated system (E–H), and increased recharge scenario for a system with seasonal snow and permafrost (I–L). Note time post-fire difference in K 
vs. C and G in accordance with timescales of permafrost thaw. Thickness of subsurface orange and blue arrows correlates to relative flux magnitude. 
Dotted line in B, C, F, and G, represents the prefire water table. Dashed line in C and G represents the early-time (0–2 years) post-fire water table. 
Horizontal dashed lines in D, H, and L denote pre-fire snowmelt input, actual ET, and groundwater recharge for comparison in the post-fire time 
series.
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occur in situations in which tree mortality is not immediate 
following fire or when drought conditions suppress precipita-
tion (Newcomer et al. 2023). Another temporal consideration 
that may impart a lagged response is the time required for de-
caying root networks to develop macropores that serve as a 
mechanism for wildfire-enhanced preferential flow (e.g., Lei 
et al. 2021).

4   |   Implications for Water Quality

Understanding expected changes in groundwater fluxes fol-
lowing wildfire has important implications for stream water 
quality due to inherent differences in chemical composition, 
residence time, and temperature of groundwater as compared 
with surface runoff and soil water (Paul et  al.  2022; Elliott 
et al. 2024). Increased baseflow and associated hydrologic con-
nectivity following fire can mediate some of the expected del-
eterious post-wildfire water quality impacts to streams (Bush 
et  al.  2024). Streams with a substantial groundwater contri-
bution serving as a relatively cool and consistent baseflow 
source have an annual thermal signature that is attenuated 
in amplitude compared to streams with minimal groundwa-
ter input (Rey et  al.  2023). Groundwater-influenced streams 
that support conditions near the summer water temperature 
tolerance limit for cold water aquatic species are therefore 
particularly vulnerable to wildfire effects on baseflow. Here, 
reductions in baseflow alone or coupled with increases in net 
surface energy inputs to the stream due to the loss of ripar-
ian vegetation and stream shading could result in maximum 
summer stream temperature threshold exceedance for some 
aquatic species (Dunham et al. 2007). In contrast, increases in 
baseflow may help counter stream temperature rises from the 
loss of solar radiation blocking from riparian vegetation (e.g., 
Wagner et al. 2014; Beyene and Leibowitz 2024). Though ther-
mal conditions in streams with substantial deep groundwater 
contributions pre-fire may be largely unaffected by wildfire 
due to the inherent buffering effect of deep groundwater, 
streams with minimal or shallow groundwater inputs may be 
most sensitive to wildfire-induced changes in stream tempera-
ture regime (Rey et al. 2023). Similarly, stream systems with 
substantial groundwater input may be less prone to changes 
in source water components (with distinct geochemistry) than 
streams with low pre-fire baseflow (Jung et al. 2009).

In addition to water quality effects to streams induced by changes 
in groundwater fluxes, wildfire can impart direct effects to 
groundwater chemistry. Preferential and diffuse flow through 
the unsaturated zone can deliver chemical constituents includ-
ing ash, fire retardants, nutrients, metals, and other chemicals 
of concern to groundwater following fire (Elliott et  al.  2024; 
Rodríguez-Jiménez et al. 2024). Post-wildfire groundwater con-
tamination has implications for human and aquatic health. A 
study by Mansilha et al. (2020) in northwest Portugal found el-
evated post-wildfire concentrations of major ions, metals, and 
carcinogenic polycyclic aromatic hydrocarbons in springs that 
support local public water supply. Elevated nitrate concentra-
tions in groundwater-sourced drinking water were detected 
downgradient of major wildfire-affected areas in a US study 
by Pennino et  al.  (2022). Following the rainy season after the 
most severe wildfires on record in Spain, Rodríguez-Jiménez 

et  al.  (2024) observed an overall decline in groundwater pH 
compared with pre-fire levels that was attributed to leaching of 
organic acids from burned biomass. Increases in groundwater 
concentrations of sulfate, nitrate, and cations linked to ash resi-
due were also observed.

Though the effects of wildfire on groundwater quality tend to 
be negative, examples of improved groundwater quality in re-
sponse to wildfire exist. Most notably, increases in recharge, can 
flush pre-wildfire groundwater chemical constituents, or even 
influence groundwater flow fields if water table rises are sub-
stantial. For example, in the study by Giambastiani et al. (2018) 
mentioned previously, major increases in post-wildfire recharge 
were shown to reduce groundwater salinity levels in the coastal 
aquifer through a dilution effect and suppression of the sea to 
inland hydraulic gradient thereby reducing seawater intrusion.

Transmission of chemical constituents to connected streams via 
groundwater pathways is a secondary, but potentially important 
and longer lasting, mode of post-wildfire surface water quality 
degradation compared with surface runoff as a primary mode 
(Nunes et al. 2018; Paul et al. 2022). Contaminated groundwa-
ter can extend stream water quality recovery times following 
fire, providing a muted, but prolonged, release of constituents 
in comparison to the pulse-like delivery of near-surface con-
taminants accompanying precipitation events soon after fire 
(Murphy et al. 2015). A study by Murphy et al. (2020) reported 
enhanced groundwater flow through underground mine work-
ings as a mechanism contributing to elevated arsenic and metals 
in streams following wildfire. Direct wildfire effects on water 
distribution systems have included well damage and ground-
water contamination at the wildland-urban interface (e.g., 
Jankowski et al. 2023; Schulze and Fischer 2020), which is an 
important topic as fires increasingly affect the built environ-
ment (e.g., Radeloff et al. 2018; Tang et al. 2025).

5   |   Needs for Future Work

5.1   |   Capturing Post-Wildfire Groundwater 
Response

The empirical knowledge base of groundwater response to 
wildfire is growing, but still lacking in overall data coverage, 
post-wildfire monitoring duration, direct pre- and post-wildfire 
measurements of groundwater recharge, auxiliary measure-
ments of cryospheric components (where applicable), ground-
water chemistry measurements, and consistent observational 
approaches. Key ideas for expanding the knowledge base 
through monitoring are summarized in Figure 3A.

Post-wildfire groundwater responses evolve over time with 
vegetation recovery and soil hydrophobicity degradation; mon-
itoring approaches could take this temporal component into 
consideration when designing sampling campaigns. Efforts to 
sample with less frequency than during the first year after fire 
but over a long duration (5–10 years) can be helpful in improving 
post-wildfire assessments. Short-term funding availability cou-
pled with added pressure to publish on early-career researchers 
in particular fuels a systemic dynamic that is not conducive for 
such long-term studies.
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Overall, there is a current deficiency of information on changes 
in water table elevation in response to wildfire (Table 1). Where 
available, groundwater monitoring sites are typically far down-
gradient of fire-affected headwaters, which introduces ambi-
guity in tying groundwater responses to fire-induced water 
balance shifts in recharge areas. Definitive understanding of 
groundwater response to wildfire requires expanded well and 
piezometric data that may be complemented with environmental 
tracers and non-invasive geophysical techniques for groundwa-
ter change detection (e.g., Cardenas and Kanarek 2014; Atwood 
et  al.  2023). Developing the use of fire tracers, or compounds 
that form during plant matter burning, may be a fruitful direc-
tion for characterizing post-wildfire recharge, though microbial 
degradation of some pyrolysis products through thick unsatu-
rated zones may limit this technique (Silberstein et  al.  2013). 
Mechanisms of preferential flow that may be invoked or en-
hanced in post-wildfire settings are understudied yet potentially 
important processes for increasing groundwater recharge and 
storage that warrant further study.

Though comparison of pre- and post-wildfire low flow and base-
flow analyses using streamflow records can provide insight 
on groundwater response integrated over burned watersheds, 
most studies are conducted in the absence of subsurface data 
at appropriate depths to fully investigate mechanistic processes 
responsible for observed changes. Interpretations that rely on 
streamflow records pre- and post-wildfire could be enhanced 
through the incorporation of strategic groundwater monitoring 
and subsurface characterization efforts.

The effects of wildfire on snow accumulation and melt are 
an area of active research (Smoot and Gleason  2021; Kampf 
et al. 2022), and how these effects translate to potential changes 
in groundwater recharge and discharge (baseflow) is not well 
known. Even less studied are the intertwined effects of snow 
and frozen ground on groundwater in wildfire-affected land-
scapes. Useful monitoring of cryospheric components includes 
water and energy measurements of snowpack together with sea-
sonally frozen ground temperature and soil moisture estimates 
through direct borehole measurements and non-invasive geo-
physical techniques (e.g., Minsley et al. 2016; Rey et al. 2021).

Groundwater pathways pose a risk for prolonged contaminant 
loading to streams following wildfire. Yet, few examples of 
post-wildfire groundwater chemistry studies exist. Building on 

post-wildfire water quality monitoring recommendations de-
scribed by Murphy et al. (2023), groundwater quality monitor-
ing can serve as a bridge for tracing and predicting near-surface 
contaminant (source) to stream (sink) transport.

To help address in situ pre- and post-wildfire measurement lim-
itations, satellite data, including optical and thermal imaging 
(Moreno et al. 2020), radar (Hrysiewicz et al. 2023), and grav-
itational measurements (Cui et al. 2023) could offer additional 
insight into the groundwater response. Direct approaches are 
currently underdeveloped due to limitations in depth of interro-
gation and spatial resolution; satellite data tend to be shallower 
and coarser than needed for detecting localized subsurface hy-
drologic change. However, satellite-based methods for estimat-
ing water balance components, including ET and snow, can be 
useful for inferring post-wildfire changes in recharge (Poon and 
Kinoshita 2018; Ma et al. 2020). In addition, advances in remote 
sensing techniques, including airborne and UAS methods for 
more directly capturing subsurface hydrologic change, may 
pave the way for more prolific and efficient research on the topic 
of post-wildfire groundwater response.

5.2   |   Post-Wildfire Groundwater Modeling

Physically based distributed hydrologic modeling applications 
to simulate the effects of wildfire tend to ignore groundwater 
processes or represent groundwater dynamics in a simplified 
way. In a review of such relevant model applications, Ebel et al. 
(2023) identified only 16% (33 of 206) that included groundwater 
flow (baseflow) as a mechanism for streamflow generation. Of 
these applications, none utilized groundwater levels as a basis 
for model calibration or performance evaluation. In most model 
applications, recharge is estimated as a water balance residual 
that is instantaneously routed to the adjacent stream as baseflow. 
However, more robust integrated modeling approaches for eval-
uating post-wildfire hydrologic response that include ground-
water processes have been conducted, offering a foundation for 
additional applications and hypothesis testing. For example, 
Maina and Siirila-Woodburn (2020) use ParFlow-Community 
Land Model (CLM), a physics-based subsurface model with 
fluid flow and energy transport coupled to a land surface model 
to simulate the complex interactions between vegetation, snow, 
and subsurface hydrology in response to post-wildfire land 
coverage changes. The approach identified counterintuitive 

FIGURE 3    |    Summary of needs for monitoring (A) and modeling (B) in post-wildfire studies to better capture groundwater response.
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feedbacks and variations in groundwater storage response 
to wildfire in a California test basin. Results from Maina and 
Siirila-Woodburn (2020) show non-uniform increases in snow 
accumulation and overall increases in groundwater storage. 
Atchley et al. (2018) also use ParFlow-CLM to explore the inte-
grated surface and subsurface hydrologic response to fire guided 
by data from the 2011 Las Conchas Fire in New Mexico, US. 
Results demonstrate a high sensitivity to burn severity under-
scoring the importance of the parameterization schemes used 
to invoke fire effects. In a review of post-fire recharge modeling, 
Guzmán-Rojo et  al.  (2024) further emphasized hydrologic pa-
rameterization commensurate with fire severity with relevance 
to recharge. They noted highly sensitive hydrologic parameters 
to recharge include curve number and saturated hydraulic con-
ductivity, while leaf area index and albedo presented moderate 
and low impact on long-term recharge, respectively.

Because of the long timescales of interest for groundwater re-
sponse to wildfire, modeling approaches that account for ecosys-
tem recovery processes such as vegetation regrowth (Partington 
et al. 2022) and the regeneration of near-surface organic matter, 
of particular importance for systems undergoing seasonal freez-
ing due to the thermal properties of organic matter, will be par-
ticularly useful. Understanding snow dynamics and subsurface 
freeze/thaw processes in influencing the groundwater response 
to wildfire are also areas ripe for further exploration using mod-
eling approaches (Figure  3B) in conjunction with enhanced 
monitoring described in the previous section.

5.3   |   Considerations for Change Detection 
and Attribution

Though currently limited by pre- and post-wildfire groundwater-
relevant data availability, some large-scale aggregated efforts 
have been made to broadly characterize groundwater response 
to wildfire with some attention toward attribution. To overcome 
the inherent challenges of distinguishing post-wildfire effects 
from those derived from interannual climate variability and 
long-term trends in climate, several methods of analysis applied 
to streamflow and meteorological records have been proposed 
and applied (e.g., Beyene et al. 2021; Williams et al. 2022; Wine 
et  al.  2018). Still, limitations exist that include accounting for 
lags in wildfire-induced hydrologic response, anthropogenic 
alterations to the natural system, and additional complexity in 
seasonal weather variations. Analyses that use auxiliary tempo-
ral data records to infer groundwater response to wildfire have 
also been shown to be data limited. For example, the paired air 
water temperature study by Rey et al. (2023) was constrained to 
western US sites with pre and post fire seasonal stream tempera-
ture records to evaluate against local seasonal air temperature. 
As a result, only 17 sites met the data record criteria. Ongoing 
expansion of stream temperature monitoring may help expand 
the utility of paired air water temperature approaches for char-
acterizing groundwater response to wildfire.

Process-based hydrologic modeling and process-guided machine 
learning hold tremendous promise to parse out the predominance 
of different hydrologic processes contributing to groundwater 
recharge and baseflow following wildfire. Modeling studies 
that incorporate subsurface processes and groundwater have 

produced important insight on primary drivers of post-wildfire 
hydrologic response (e.g., Ebel 2013b; Ebel et al. 2016; Atchley 
et  al.  2018; Maina and Siirila-Woodburn  2020). Groundwater 
responses in post-wildfire process based hydrologic modeling 
have not been prioritized, however, as studies have focused 
more on immediate post-wildfire hazard modeling emphasiz-
ing surface runoff responses (Ebel et  al.  2023). Model-based 
numerical experiments allow examining testable hypotheses 
to quantify the relative importance of hydroclimatic, pyrologic, 
ecologic, and hydrogeologic factors to fill in knowledge gaps re-
maining from observation-based studies. Modeling approaches 
also provide a basis for assessing how groundwater dynamics 
may evolve with climate change and enhanced wildfire activ-
ity. Combined wildfire and climate effects could enhance the 
potential for vegetation type conversion, such as from forest to 
shrubland to grassland, favoring a positive recharge response 
(Collar et  al.  2023). Wildfire-induced effects on groundwater 
quantity and quality tend to be localized, but with projected ex-
pansion of the wildfire footprint, such effects may become more 
widespread and regionally important to water supply (Bladon 
et al. 2014; Nunes et al. 2018). Expected hydroclimatic shifts to-
ward “wet gets wetter, dry gets drier” (e.g., Meixner et al. 2016) 
may widen the disparity observed in groundwater responses to 
wildfire and recovery times given the strong influence of aridity 
(Goeking and Tarboton 2022).

5.4   |   Testable Hypotheses

Efforts specifically designed to evaluate the groundwater re-
sponse to wildfire are not common in post-wildfire hydrologic 
response studies. Yet, this review identified a number of studies 
that have focused on quantifying post-wildfire subsurface hy-
drologic response including changes in groundwater recharge, 
storage, baseflow, and low flow. Though some consistent rela-
tionships emerge, considerable spatiotemporal variability ex-
cludes a one-size-fits-all conceptual model for the groundwater 
response to wildfire. The low number, minimal spatial coverage, 
and short durations of such studies preclude a detailed empiri-
cal investigation into all plausible factors controlling observed 
variability. In light of these limitations, we provide a list of hy-
potheses aligned with the synthesis described in Table  2 and 
summarized in Figure 4, as a basis for developing a comprehen-
sive paradigm for the groundwater response to wildfire with 
an emphasis on intermediate (2–10 year) post-fire timescales. 
The list is roughly ordered from most to least well-established 
concepts in the current literature. A common thread is the im-
portance of the pre-wildfire groundwater regime in imparting 
critical context for expected groundwater response and/or wild-
fire recovery.

Post-wildfire groundwater response hypotheses:

•	 Climate (most importantly precipitation regime, aridity, 
water/energy synchrony, and interannual variability) plays 
a determining role in groundwater response to wildfire. 
Asynchrony between water inputs and atmospheric demand 
(such as found in a Mediterranean dry summer/wet winter 
climate) raises the likelihood of an increased groundwater 
(recharge, storage, or baseflow) response to wildfire. In con-
trast, systems subject to relatively synchronous water and 
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energy input experience minimal or reduced groundwater 
response to wildfire due to compensatory uptake processes. 
High aridity reduces the magnitude of water balance shifts 
and consequently suppresses groundwater recharge shifts 
or even reduces baseflow contributions. Annual variations 
in aridity may be more important than long-term climate 
averages for determining the groundwater response to fire, 
commensurate with findings for post-wildfire watershed 
yield (Goeking and Tarboton 2022; Biederman et al. 2022).

•	 An increased groundwater recharge response to wildfire is 
expected in settings with subsurface conditions that favor 
high rates of percolation through the vadose zone, such as 
deep permeable soils and systems prone to preferential flow.

•	 Decreased baseflow response to wildfire is expected in con-
ditions that favor rapid vegetation regrowth post-wildfire of 
the same vegetation type present before the fire (e.g., low 
severity burn scars; grasslands; resprouting vegetation) and 
compensatory uptake (e.g., low riparian area burn percent-
age, low burn area fraction). In contrast, increased baseflow 
responses are expected in conditions of post-wildfire vege-
tation type conversion from forest to shrub or grass vegeta-
tion types.

•	 Pre-wildfire groundwater-stream connectivity serves as 
an important determinant for the post-wildfire baseflow 
response. Specifically, a detectable increase in shallow 
groundwater discharge to streams is most likely to occur in 
systems with minimal pre-wildfire groundwater influence. 
In contrast, watersheds with strong pre-wildfire groundwa-
ter influence are buffered from changes in baseflow and/or 
source water contributions.

•	 A positive (increased) groundwater response to wildfire 
is expected in watersheds with considerable high severity 
burned area.

•	 A positive (increased) groundwater response to wildfire 
is expected in snow-dominated systems that favor greater 
snow accumulation (reduced interception prevails over 
changes in energy balance), earlier melt, and reduced sea-
sonally frozen ground, whereas a negative (decreased) 
response is expected in snow-dominated systems that 
favor reduced snow accumulation (net positive shortwave 

radiation balance prevails over reductions in canopy inter-
ception), faster melt rate, and enhanced seasonally frozen 
ground.

•	 A positive (increased) groundwater and baseflow response 
to wildfire is expected in settings with underlying perma-
frost resulting from thaw-induced opening and expansion 
of groundwater pathways.

•	 Pre-wildfire ecohydrological conditions, specifically 
water table depth relative to vegetation rooting depths and 
drought stressors, influence water balance recovery times 
from wildfire, thus affecting groundwater. Drought condi-
tions will slow post-wildfire recovery rates most notably in 
non-forested vegetation with shallow rooting structures, fa-
voring increased recharge.

•	 Seasonal freeze/thaw processes influence post-wildfire re-
charge response. Areas that undergo seasonal soil freeze/
thaw and catchments with high soil moisture will show 
shortened effects of fire-enhanced soil hydrophobicity rela-
tive to areas with soils that do not undergo seasonal freeze/
thaw. As a result, fire-affected areas in cold regions with 
relatively wet soils are not expected to show a wildfire-
induced decrease in recharge that persists beyond the first 
winter post fire. Furthermore, enhanced post-fire early 
season snow accumulation insulates soils and reduces the 
likelihood of seasonal frozen ground as an inhibiting agent 
of snowmelt infiltration, thereby increasing winter–spring 
recharge.

6   |   Conclusion

As demonstrated by the studies highlighted here, wildfire can 
have varied effects on groundwater recharge, storage, and base-
flow. Many observational studies reporting on groundwater 
response extend for just 2 years or less post wildfire due to fund-
ing limitations and pressure to publish early, though it is rec-
ognized that longer studies would be beneficial. Fire-enhanced 
soil water repellency diminishes over the first year or two fol-
lowing fire, resulting in reduced infiltration impedance. The 
corresponding effect on groundwater hydrology could result 
in a short-term post-wildfire reduction in recharge that may be 

FIGURE 4    |    Summary of variables within the five critical categories that have been linked to increased (blue up arrow), decreased (red down 
arrow), and neutral (black bi-directional arrow) groundwater response (GWR) in the available literature.
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reversed over time in response to reduced canopy interception 
and evapotranspiration prior to vegetation recovery.

Efforts to address spatiotemporal variability in the groundwater 
response to wildfire are ripe for extended investigation. Pre-fire 
regional (climate, vegetation) and local (hydrogeologic) condi-
tions together with wildfire characteristics are thought to mediate 
groundwater responses, yet precisely how these multi-scale in-
teractions play out over time in different settings and geographic 
areas, including those influenced by cryospheric processes, is 
not well characterized. More post-wildfire measurements of 
groundwater levels are a clear need to improve understanding of 
groundwater effects from wildfire especially in areas with existing 
pre-fire groundwater data. Some promising methods of analysis 
that can also be used to determine groundwater response to wild-
fire across large scales and heterogeneous landscapes include: 
(1) tracer-based approaches such as water isotopes, geochemical 
indicators, and paired air and water temperature analyses; (2) 
time-lapse geophysical characterization; (3) process-based and 
process-guided modeling. Currently, data availability constrains 
the full potential of these methods. Because of the important im-
plications for vegetation recovery rate and low flow conditions, 
water temperatures and water quality in groundwater-influenced 
streams, it is imperative to better understand groundwater re-
sponse to wildfire. Collective hypotheses offer a path forward for 
advanced conceptualization on this topic.
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